Antieigenvalue inequalities in operator theory

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antieigenvalue inequalities in operator theory

We will prove some inequalities among trigonometric quantities of two and three operators. In particular, we will establish an inequality among joint trigonometric quantities of two operators and trigonometric quantities of each operator. As a corollary, we will find an upper bound and a lower bound for the total joint antieigenvalue of two positive operators in terms of the smallest and larges...

متن کامل

Bounds for total antieigenvalue of a normal operator

We give an alternative proof of a theorem of Gustafson and Seddighin (1993) following the idea used by Das et al. in an earlier study of antieigenvectors (1998). The result proved here holds for certain classes of normal operators even if the space is infinite dimensional.

متن کامل

Approximations of Antieigenvalue and Antieigenvalue-Type Quantities

We will extend the definition of antieigenvalue of an operator to antieigenvalue-type quantities, in the first section of this paper, in such a way that the relations between antieigenvalue-type quantities and their corresponding Kantorovich-type inequalities are analogous to those of antieigenvalue and Kantorovich inequality. In the second section, we approximate several antieigenvaluetype qua...

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

Unbounded violations of bipartite Bell Inequalities via Operator Space theory

In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order Ω ( √ n log2 n ) when observables with n possible outcomes are used. A central tool in the analysis is a close relation between this problem and operator space theory and, in particular, the very recent noncommutative Lp embedding theory. As a consequence of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2004

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171204403615